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In this cross-campus proposal, we set out to develop a human-relevant in vitro
platform for studying Parkinson's disease (PD), and to use it for identifying PD-
associated abnormal pathways using patient-specific differentiated cells.

Over the first six months, we developed the computational, biological, and
engineering infrastructure for tackling this goal, advancing considerably on all
fronts.

On the computational side, (Sharan Lab) we developed a tool for pathway
enrichment analysis that is based on projecting the raw activity data of disease vs.
healthy proteins on a network of protein-protein interactions and then smoothing
this information using network propagation techniques. In order to validate and
assess the model, we did a massive literature survey to identify specific genes that
were identified and published previously (in databases). It is important to note that
the next step will be to apply this on the in-house data that will be available from
our organoids and iPSC. The data we found was based on the expression data of
iPSC-derived dopaminergic neurons from LRRK2-G2019S mutants vs. healthy

controls from Carola et al., Nature 2021.

Our initial analysis identified four significantly enriched pathways (circled in
bold out of top 100, see figure below) known to be associated with PD. As can be
also observed, network propagation yields more significant results than the raw
fold-change scores, demonstrating the power of analyzing expression data in the

context of a network.


https://www.nature.com/articles/s41531-021-00198-3
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In parallel, on the experimental (biological and engineering) side, we developed

a protocol for growing cortical organoids from PD patients.

We received fibroblasts from a patient with LRRK2%2°19° mutation, a patient with
GBA-1"¥"% mutation and healthy control, generated induced pluripotent stem cells
(iPSC) (a process which took about 4 months), and were able to expand the culture
so that we will have enough cells for future experiments. This step is a major

milestone in this work.

Our next step was to grow brain organoids (Fig. 2). This step creates a state-of-
the-art biological model to model neurodegenerative disease. The brain organoids
started to create three-dimensional structures, and are currently at day 6. We will
mention that we were able to grow them up to day 30, but due to a power break
and failure in the infrastructure, the cells died and we had to restart the organoids.
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Figure 2 Derivation of cerebral organoids from induced human pluripotent stem cells
Phase contrast images of days 0-6 EBs subjected to neural induction under combined dual
SMAD and WNT inhibition of LRRK2, GBA1 PD and healthy control patients.
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Once the organoids grow, we will profile their gene expression and apply the
pathway enrichment tool to identify disease-relevant pathways.



